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Thread Structure Learning on Online Health
Forums With Partially Labeled Data

Yunzhong Liu, Jinhe Shi , and Yi Chen

Abstract— Thread structures, the reply relationships between
posts, in online forums are very important for readers to under-
stand the thread content, and for improving the effectiveness
of automated forum information retrieval, expert findings, and
so on. However, most online forums only have partially labeled
structures, which means that some reply relationships are known
while the others are unknown. To address this problem, studies
have been performed to learn and predict thread structures.
However, existing work does not leverage the partially available
thread structures to learn the complete thread structure. We have
also observed that many online health forums are a type of
person-centric forums, where persons are mentioned across posts,
providing hints about the reply relationships between posts.
In this article, we first proposed to learn the complete thread
structures by leveraging the partially known structures based on
a statistical machine learning model—thread conditional random
fields (threadCRFs). Then, we proposed to use person resolution,
the process of identifying the same person mentioned in different
contexts, together with threadCRF for thread structure learning.
We have empirically verified the effectiveness of the proposed
approaches.

Index Terms— Thread conditional random fields (threadCRF),
thread structure learning.

I. INTRODUCTION

ONLINE forums provide a convenient channel for peo-
ple to share their experience and exchange ideas and

have attracted more and more users. They become valuable
resources for extracting useful knowledge, through the forum
search, question answering, and expert finding. A typical
forum thread consists of a sequence of posts, ordered accord-
ing to the time when the post is submitted. Logically, a thread
can be represented by a tree structure, where each post has
one parent to which it replies, except the first post—the root
of the tree [1]. One post can be replied by multiple posts,
that is, can have many children. An example of a forum
thread in tree representation is shown in Fig. 1, which is
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Fig. 1. Sampled thread of eight post fragments.

extracted from one thread in the epilepsy foundation forum
(http://epilepsyfoundation.ning.com/forum). The tree structure
of forum threads can save users time and effort to track and
get involved in the discussion and help them to understand
the interaction among forum users, such as who is following
whom or who is the receiver of a suggestion. The litera-
ture also demonstrates that thread structure can boost the
performance of automated forum information extraction [2],
information retrieval [3], [4], clustering [5], online community
search [6], topic summarization [7], and experts finding [8].

However, most of the Web forums do not have the complete
thread structures available, which means the parents of some
posts are unknown. Many forum authors just use the default
mode to reply without specifying to which posts they reply,
nor quoting existing posts.

There is existing work for learning complete thread struc-
tures [1], [9], [10]. For example, thread conditional ran-
dom fields (threadCRFs), proposed by [1], have been shown
effective in learning thread structures. They typically require
training data that have complete thread structures, which
is not always available and sometimes obtained through
labor-intensive manual labeling. We observed two properties
in online health forums that we would like to leverage to learn
thread structures in a scalable way without manually labeled
training data. One is the prevalently available partially labeled
thread structures in online forums, and the other is the key
role that person references play in person-centric forums.

A. Partially Labeled Thread Structures

In reality, online forums have an abundance of partially
labeled reply structures. There are always some post authors
who have a good habit of keeping an explicit reply structure.
An example of such a partially labeled thread structure is
shown in Fig. 1. In this forum, if one post explicitly replies to
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another post, it will quote that post. We can easily obtain some
explicit reply relationships from the quotation relationship,
as indicated by the solid arrow in Fig. 1. While such partially
labeled thread structures are prevalent in online forums and
can provide valuable information, they are not leveraged in
the existing work.

B. Person-Centric Forums

We observed two types of online forums. Some forums are
centered around specific questions or topics, such as most
of the technical discussion forums. On the other hand, some
forums are centered around persons, such as the health forums
for patients and caregivers to share experiences and support
each other. Typically health forum users introduce problems
and make comments in a subjective way, describing personal
experience and giving feedback to other users. In other words,
a thread has a collection of user cases raised by some
forum users and commented by others. Since a post often
refers to other persons either mentioned in this post, in the
parent, or ancestor post, identifying correct thread structure
in person-centric forums is even more important than other
forums to understand the context.

On the other hand, person-centric forums also bring oppor-
tunities. There are often people mentions in the posts. When
one post replies to another, it tends to mention the person
described in the parent or ancestor post. Conversely, if one
post mentions a person that is described in a preceding post,
then this post is likely to be a child or descendant of that
preceding post. According to this observation, if we can find
out the person references, we can use them to help to learn
the thread reply structures. Indeed, often forums are written
representation of conversations among a group of people. The
references of persons provide great hints on who talks to whom
in a “chat room.”

C. Our Contributions

In this article, we first propose to learn complete thread
structures from the partially labeled structures based on the
threadCRF learning model. Then, we leverage the person ref-
erence information and combine it with threadCRF for thread
structure learning. The person references can be obtained using
person resolution (PR) techniques, which identify the same
person mentioned in a different context. We use unsupervised
PR techniques to materialize the most likely candidates for
unknown thread reply structures and generate a fully labeled
training data set. This data set can be considered as an
approximation of the ground truth and used to bootstrap
the supervised threadCRF model training. We then use the
learned model to relabel the unknown thread structures with
the partially known structures as constraints. In addition to
being used for training data generation, the person references
are also encoded as semantic features and incorporated into the
learning model to further improve the thread structure learning
performance. By leveraging person references information
discovered in semantic analysis of posts, and combining them
with the syntactic and structural features captured by thread-
CRF, the proposed approaches provide a unified framework

Fig. 2. System architecture.

for thread structure learning. We have empirically verified the
effectiveness of the proposed approaches.

II. LEVERAGING PARTIALLY LABELED DATA FOR

THREAD STRUCTURE LEARNING

In this section, we first define the problem and introduce
the threadCRFs model. Then, we introduce how to train and
learn with the partially labeled thread structures.

A. Problem Definition

Given a thread Xn with a sequence of m posts
{p0, p1, . . . , pm−1}, we need to find the parent post for each
post in Xn , denoted by Yn = {y1, y2, . . . , ym−1}, where yi is
the known or predicted parent for pi . Note that we only need
to predict yi for i > 1, since the first post has no parent and
the second post’s parent is always the first post (y1 = p0).

B. System Architecture

Fig. 2 shows the system architecture. The input data
is partially labeled forum threads. The PR feature checker
(to be discussed in Section III-A) extracts PR features from
partially labeled data. Utilizing the PR features, the mate-
rialization module converts a partially labeled thread to a
fully labeled thread (Sections II-D and III-B). Then, the fea-
ture extraction module extracts node and edge features from
the fully labeled thread. These features, together with PR
features, are subsequently fed into the threadCRF model
(Sections II-C and III-C) to learn the parent label of each
post (if unknown) in the thread and output the thread with
completely labeled reply relationships. Next, we discuss each
module in the system.

C. Thread Conditional Random Fields

The (threadCRF) model, proposed by [1], is shown effec-
tive in learning thread structures. It is a supervised learning
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approach that requires a fully labeled data set for training.
In threadCRF, given the post sequence in Xn and the model
parameter set � = {λk}K

k=1, the conditional distribution of Yn

is defined as follows:

p(Yn|Xn,�) ∝ exp

(
K∑

k=1

λk fk(Xn, Yn)

)
(1)

where { fk(Xn, Yn)}K
k=1 is the set of features for the post

sequence in Xn and the parent labeling sequence Yn , and
{λk}K

k=1 are the weights for those corresponding features. The
thread structure learning task is formulated as a maximum a
posteriori (MAP) inference problem to find the optimal reply
structure Y ∗

Y ∗ = arg max
Y∈�

p(Y |Xn,�) (2)

where � is the set of all possible reply structures for
thread Xn .

The key to the above-mentioned threadCRF framework is to
define a set of features to capture the interdependency among
the posts in terms of the reply structure. Thirteen features
are used, including six node features and seven edge features.
A node feature only depends on a pair of posts, say pi and
p j with i > j , to determine how likely pi replies to p j . For
example, content similarity is one of such node features—if
the content of pi is similar to that of p j , pi is likely replying
to p j . An edge feature captures the dependence between two
pairs of reply relationships. For example, one edge feature is
repeat reply—if we know that Alice has replied to Bob, then
the following post written by Bob is likely replying to Alice.

To handle the complexity associated with the edge features,
which capture the long-distance dependence among posts,
an approximate MAP inference is used for (2) to learn the
model parameters from the training data set. Given a training
set T = {X1, X2, . . . , X N }, with the ground-truth parent labels
R = {Y1, Y2, . . . , YN }, it estimates the optimal model parame-
ters � = {λk}K

k=1 by maximizing the following log-likelihood
function:

L� =
N∑

n=1

log p(Yn|Xn,�)

=
N∑

n=1

[�T F(Xn, Yn) − log Z�(Xn)] (3)

where F(Xn, Yn) are the accumulated feature values
for one thread in the training set and log Z�(Xn) =∑

Y exp(�T F(Xn, Y )). The Limited-memory Broyden–
Fletecher–Goldfarb–Shanno (L-BFGS) algorithm is used to
optimize the object function in (3). The gradient is derived
by taking the derivative of the object function

∇L� =
N∑

n=1

[F(Xn, Yn) − E p�(Y |Xn) F(Xn, Y )] − λ

σ 2 (4)

where E p�(Y |Xn)F(Xn, Y ) is the model expectation of the
features’ occurrences for the given training thread and (λ/σ 2)
is the regularization term.

D. Training Set Generation With Partially Labeled Data

Note that the threadCRF is a supervised learning model,
which requires a completely labeled data set for model train-
ing. In this section, we propose to generate a fully labeled
training set given the partially labeled data.

We materialize all the possible thread reply structures given
the partially labeled reply structures. Specifically, if a post has
explicitly specified its parent, then we use this information
directly. Otherwise, we consider each preceding post as a
possible parent of the post and generate multiple possible
training instances with each containing a possible thread reply
structure. In this way, the obtained training data sets are fully
labeled. We call this process of converting a partially labeled
data set to a fully labeled one as materialization.

One possible approach is to consider all the materialized
instances from the same partially labeled thread equally possi-
ble, denoted Materialization with Equal Probabilities (M E P).
Assume that the nth partially labeled training thread can be
materialized into Mn completely labeled instances. With the
materialized training instances, we have the following equation
for the derivative of the threadCRF object function, which is
modified from (4):

∇L� =
N∑

n=1

[∑Mn
i=1 F(Xn, Yni )

Mn
− E p�(Y |Xn)F(Xn, Y )

]

− λ

σ 2 (5)

where Xn is the post sequence of the nth training thread and
Yni , 1 ≤ i ≤ Mn is one possible parent labeling sequence for
the nth thread. ((

∑Mn
i=1 F(Xn, Yni ))/Mn) is the accumulated

empirical feature value for Xn .
This materialization approach considers all the possible

reply structures in a thread equally important, which may
not be accurate. Furthermore, a huge amount of materialized
training instances will be generated, which will lead to a
dramatical increase in the time and space complexity for the
factor graph generation and marginal probability inference
during the threadCRF model learning. For example, if there
are T posts, denoted as pu1 , pu2, . . . , puT , with unknown
parents in a thread, where pui has ui candidate parents and
ui ≥ 2, then the total number of materialized instances will be
u1 · u2 . . . · uT ≥ T , which is a huge number if T is relatively
large. A more effective and efficient materialization process
will be introduced later.

E. Constrained ThreadCRF for Partially Labeled Data

When applying the trained model to learn a complete
reply structure for a given thread, threadCRF predicts the
parents for all the posts despite the fact that some of them
are already known. We propose to use the existing partially
known structure as constraints. We denote this approach as
constrained threadCRF. We not only want to preserve the
existing reply structures in the final output of the complete
reply structures but also want the existing structures to help
infer the unknown structures by encoding them into the model.
In order to do that, we add one parent feature into the original
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threadCRF model, which is defined as follows:

Parent(yi = j) =

⎧⎪⎪⎨
⎪⎪⎩

1, if yi = j is known

−1, if yi �= j is known
1

i
, if yi is unknown.

(6)

Here, yi is the parent post ID of the i th post, and j is a parent
post ID, where i ≥ 1, j ≥ 0, and i > j . For the i th post, if its
parent is unknown, all the i candidates are assigned with the
same feature value (1/ i).

III. LEVERAGING PERSON RESOLUTION FOR THREAD

STRUCTURE LEARNING

As discussed in Section I, PR can be useful for thread
structure learning. In this section, we discuss how to leverage
PR for thread structure learning on online health forums.
We first introduce our PR system, and then, we proposed to
use PR to generate thread structures. At last, we introduce how
to combine PR with threadCRF for thread structure learning.

A. Person Resolution

PR is the process of identifying the same person mentioned
in different contexts. Usually, some general coreference res-
olution, anaphora resolution, or pronoun resolution systems
can be used for PR [11]–[14]. In terms of the scope, there
are three types of PR in a forum—intrapost, interpost, and
interthread PR. The intrapost PR confines the PR within a
post. The interpost PR considers the PR between posts but
within a thread, while the interthread PR considers the PR
between threads.

We mainly use the interpost PR for thread structure learning,
since the thread reply structures focus on the relationships
between posts within a thread. The intuition behind that is as
follows: if one post replies to another post, it tends to mention
the same person who has been mentioned in its parent post.
Conversely, if one post contains some person mentions that
refer to the same person mentioned in a preceding post, then
the post is likely to be a child or a descendant of that preceding
post.

We design our own interpost PR system for thread structure
learning since there are no publicly available systems for
interpost PR. We observed that a forum thread could be
considered as a multiperson dialog, where a post author is like
a speaker, and the post content is analogous to the utterance,
though a post can be very long. We designed several types
of PR features. Each feature type has a different priority.
We manually review some posts during the feature generation.
We ranked the features based on our review These feature
types are arranged in the descending order of priority, which
serve as a multipass sieve with the first pass (type) having the
highest priority. Specifically, our current PR system for thread
structure learning includes the following four types of features
in the order of descending priority.

1) PR Feature—Address and Signature Matching: Matching
between the address in the current post content and the
signature in the parent post content. Usually, the address
appears at the beginning or follows some tokens such as “hi,”

“hello,” and so on, and the signature appears at the end of a
post following some tokens such as “thanks,” “regards,” and
so on. We consider a person name recognized by a name entity
recognition system in the Stanford Core NLP tools right after
one of these tokens as an address or a signature. Furthermore,
we also identify nicknames, acronyms, authorID, and so on,
using patterns expressed by regular expressions. For example,
acronyms typically consist of uppercase letters and end with
“.” and authorID is a combination of letters and numbers.

2) PR Feature—Role Matching: Matching between the
same role related to the same person. First, our system
identifies all the role mentions, such as “son,” “daughter,”
“sister,” and so on, using the family group semantic type in
metamap [15]. Second, we combine the identified role with
the first or second personal pronouns like “our,” “my,” and
“your” for matching pairs, where the pronouns are identified
by the Part-of-Speech (POS) module in the Stanford Core NLP
tools. Finally, the word “my/our” followed by a role (such as
daughter) in a preceding post can match “your” followed by
the same role in the current post.

3) PR Feature—First-Person Pronoun Matching: Matching
between the first-person pronouns, such as “I,” “we,” and “my,”
in the candidate parent post and the second-person pronouns,
such as “you” and “your,” in the current post that tend to
refer to the same person. Semantic role labeling (SRL) [16]
and WordNet [17] are used for checking if they tend to refer to
the same person. First, we identify the first-person pronouns in
the parent post and the second-person pronouns in the current
post. Then, we use SRL for finding the associated verbs with
the pronouns in a sentence. If the verb associated with the
first-person pronoun is a synonym of the verb associated with
the second-person pronoun according to WordNet, then we
consider them as a matching. For example, “I” in “I got fever”
can be matched to “you” in “The symptom you had. . .,” as
“get” and “have” are synonyms in WordNet.

4) PR Feature—Third-Person Pronoun Matching: Matching
between the third-person pronoun in the current post and the
person name or role in the parent post that are consistent in
gender. Note that we also ensure that the third-person pronoun
has not been resolved to a person’s name or role appearing in
the same post, and this person is a different one from that in
the parent post. The Stanford coreference resolution system is
used for checking the PR within a post. For example, consider
the first sentence of a post to be “she should. . .,” the pronoun
“she” can refer to “my daughter” mentioned in a proceeding
post. However, “she” in a post such as “My friend Mary . . .
she . . .” is more likely to refer to “Mary,” instead of referring
to “my daughter” in a proceeding post.

Since the Stanford Core NLP tools do not output confidence
level for PR, we set the priorities of the PR features based on
data characteristics. Address and signature matching has the
highest priority as it gives direct signals about the reply rela-
tionships based on PR. The other three PR features give less
direct signals about reply relationships and are ranked based
on expected accuracy. Role matching has the second-highest
priority since PR is more likely to be accurate when role
mentions are matched. The next priorities go to first-person
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Algorithm 1: Multipass Candidate Thread Structure Selec-
tion
Input: A thread with a partially known structure.
Output: A complete thread structure.

1 for each post do
2 if parent is unknown then
3 Put all the preceding posts in the candidate set;
4 for PR features (descending order of priority) do
5 for each post in the candidate set do
6 Mark the post if this type of features can be

matched;
7 end
8 if Only one candidate is marked then
9 Output that candidate as the labeled parent;

10 else if More than one candidates are marked then
11 Remove unmarked candidates;
12 end
13 if More than one candidate remains then
14 Use the rule in Section III-B to find the winner
15 else
16 Output the predicted parent.
17 end

pronoun matching, and then, third-person pronoun matching,
where accurate PR is more challenging.

Here, we only define pairwise PR features, which means
each feature only involves a pair of posts. When applying PR
for the unsupervised thread structure generation, we predict the
unknown thread structure by evaluating each individual reply
relationship independently. Note that we can also define the
PR features involving multiple pairs of posts corresponding
to multiple reply relationships, and learn the entire thread
structure tree by considering all these PR features at the same
time. In this way, we learn a globally optimal thread structure
in terms of PR. However, such global optimization will be
highly expensive in computation.

B. Leveraging Person Resolution for Thread Structure
Labeling

Given the above-mentioned different types of PR features,
we design the multipass candidate structure selection algo-
rithm as shown in Algorithm 1, which takes a thread with
a partially known structure as input and outputs a complete
thread structure. We compare the priority of feature types
matched by each candidate. In particular, each type of feature,
in the descending order of priority, is used to filter out those
less likely candidates. For each feature type, we divide the can-
didates into two subsets—matched and unmatched. We then
remove the unmatched from the candidate set. We continue
in this way until all the types (passes) of features have been
checked.

We break a tie when there are multiple candidates left at
the end using the following two rules. First, we observed that
the forum users tend to reply to the thread initiator (the author
of the first post), except for the initiator himself/herself. If a
post that is not authored by the thread initiator has a set of
candidate parents, one of which is from the thread initiator,

then we output the post from thread initiator as the labeled
parent. Second, we observed that forum users tend to reply to
more recent post given other factors the same. If two candidate
parents are both from the thread initiator or neither of them
is from the thread initiator, then the more recent one will be
output as the labeled parent.

C. Combining PR With ThreadCRF For Thread
Structure Learning

In this section, we introduce how to combine PR with
threadCRF, including how to materialize training instances
with PR evaluation, and how to encode PR into threadCRF.

1) Materialization With PR Evaluation: As we have dis-
cussed earlier, materializing partially labeled data to fully
labeled one with equal probabilities will result in an expo-
nential increase in the data size, and thus, the computational
time and space in model training process. Furthermore, not all
preceding posts are equally likely to be the parent of one post.
To improve the model accuracy and efficiency, we propose to
materialize fully labeled instances considering the probability
of each post being a candidate parent. The challenge is how to
estimate the probability of a post being the parent of another
post.

As person references give hints on the parent–child rela-
tionships between posts, we propose to use the PR techniques
to evaluate the likelihood of all possible candidate parents
and only materialize the most likely candidates. In this way,
we expect the materialized thread structures are more accurate
and help learn a more accurate threadCRF model. When
there is no clear PR indication for some posts, we use three
unsupervised rule-based baseline approaches—reply to the
first post, reply to the last post, and reply to the post with
the highest content similarity, referred FIRST, LAST, and SIM,
respectively. In our implementation, we use term frequency–
inverse document frequency (TF-IDF) weighted cosine sim-
ilarity to measure content similarity, the same as the ones
used in threadCRF [1], in order to make fair performance
comparisons. Here, IDF is calculated based on the number of
posts containing the word in the given thread. Other content
similarity methods, including combining multiple methods,
can also be used in the system.

The whole materialization process is shown in Algorithm 2.
2) Encoding PR Into ThreadCRF: The PR model can not

only help generate fully labeled training data set to train the
threadCRF model, but it can also be incorporated as part
of the threadCRF model. Recall that the threadCRF model
includes a set of node and edge features. We encode PR as
a node feature. Specifically, we define the PR feature value
PR(yi = j) between post i and its candidate parent j , where
i ≥ 1, j ≥ 0, and i > j . We assign a weight for each PR
feature type based on its priority. Assume there are L types
arranged in the descending order of priority. For the kth type,
1 ≤ k ≤ L, its weight is assigned as exp(L − k). Suppose we
are evaluating the PR feature value for the i th post to reply to
the j th post, represented as PR(yi = j), we have

PR(yi = j) =
L∑

k=1

exp(L − k) · δi j k (7)
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Algorithm 2: Materialization With PR Evaluation
Input: One thread with a partially known reply structure.
Output: Multiple thread instances each with a complete

reply structure.
1 for each post (starting from the third post) do
2 if its parent post is unknown then
3 List all the preceding posts as the candidate parents;
4 Use the pseudo codes from Line 4 to Line 12 in

Algorithm 1 to shrink the candidate set;
5 if the candidate set includes the first, last, and the

post with the highest content similarity then
6 Further shrink the candidate set by only retaining

the first, last, and the most similar post as the
candidates;

7 else
8 List the known parent as the only candidate.
9 end

10 Generate all the possible thread structures by picking one
candidate for each post (starting from the third post).

where ⎧⎪⎨
⎪⎩

1, if the kth type is matched for post i

and its parent j

0, Otherwise.

(8)

IV. PERFORMANCE EVALUATION

In this section, we present the data sets, comparison meth-
ods, evaluation metrics, results, and analysis of the experimen-
tal evaluation of the proposed methods.

A. Data Sets and Training Data

As discussed earlier, our goal is to leverage partially labeled
thread structures to learn complete thread structures. This is
important as most of the forums do not have completely
labeled thread structure. On the other hand, this also poses
challenges since the training set is not fully labeled, making
the model training difficult. To address this challenge, we use
a small part of partially labeled data to train the model. Instead
of randomly selecting threads as a training set, we select
threads with large percent of reply relationships labeled as the
training set in order to boost model training. Then, the model
predicts unknown reply relationship in the whole data set. This
approach is applicable to any forum data.

We evaluated the proposed methods with two different
health forum data sets.

1) Patients Forum Data Set: Although most of the health
forums only have partially labeled structures, we managed to
find one forum, the patients’ forum on tumors of the parotid
gland (http://patientsforum.com), that has fully labeled thread
structures with each represented in a hierarchical tree view,
representing a good test data set. We collected all 23 842 posts
in 2646 threads. In our experiments, we randomly removed a
known reply relationship with probability 0.3 and got 5561
unknown reply relationships. We selected 1105 threads with

more labeled relationships to compose the training set and
used the proposed methods to predict the removed reply
relationships in all 2646 threads. We use the original data
(without reply relationship removal) as the ground truth for
performance evaluation.

2) Epilepsy Forum Data Set: We collected 9210 posts
in 911 threads (topics) published on the “patient help patient”
subforum in the previous mentioned epilepsy foundation
discussion forum (http://epilepsyfoundation.ning.com/forum).
In this forum, some posts explicitly reply to a preceding
post by quoting that post; while others have unknown reply
relationships. We selected a subset of 200 threads that have
more known reply relationships to train the threadCRF model.
As it is very expensive to manually label ground truth,
we only obtained all the 468 unknown reply relationships in
the selected 200 threads for evaluation.

B. Comparison Methods

We tested our proposed methods and compared them with
existing methods. All the tested methods are divided into three
categories—rule-based, CRF [1], and CRF + PR. Table I
explains all those methods. For comparison methods, FIRST,
LAST, and SIM have been used as comparison methods by [1].
For SIM, we used the standard TF-IDF weighted cosine
similarity, where IDF is calculated based on the number of
posts containing the word in the given thread. MEP is the
direct adaption of threadCRF for our proposed application
scenario.

C. Evaluation Metrics

We followed the same evaluation method as the one used by
[1] as presented below. The first category is about the accuracy
of individual parent labels or paths from the node to the root in
the thread structure tree. The accuracy of individual labels,
denoted as Accedge, is defined as the proportion of correct
labels in the whole set of predicted labels. Let U denote
the set of posts with unknown parent labels, yi denote the
ground-truth label for pi ∈ U , and ŷi denote the predicted
label for pi . We define

Accedge =
∑

pi ∈U δ[y(i) = ŷ(i)]
|U | (9)

where |U | is the size of set U . δ[y(i) = ŷ(i)] = 1 if the two
labels are the same. Otherwise, it is zero.

We also defined the path accuracy, denoted by Accpath,
as the proportion of correct paths from each node to the root
in the thread structure tree

Accpath =
∑

pi∈U δ[path(i) = ̂path(i)]
|U | (10)

where path(i) and ̂path(i) are the set of nodes (posts) in
the path from the node i (post pi ) to the root node in
the ground-truth path and the predicted path, respectively.
δ[path(i) = ̂path(i)] = 1 if the two paths are identical. Oth-
erwise, it is zero. Note that the path-based metrics emphasize
that correct prediction of the labels for those nodes with more
descendants is more important.
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TABLE I

COMPARISON METHODS (OUR PROPOSED METHODS ARE MARKED IN A BOLD FONT)

TABLE II

PERFORMANCE COMPARISON ON THE PATIENTS FORUM DATA SET

In the second category, we defined the path-based preci-
sion and recall, which are a relaxation of the accurate path
matching, as in (10). The precision is the proportion of the
predicted paths that are part of the ground-truth paths in all the
predicted paths. The recall is the proportion of the ground-truth
paths that are part of the predicted paths in all the ground-truth
paths. They are mathematically defined as follows:

Ppath =
∑

pi ∈U δ[ ̂path(i) ⊆ path(i)]
|U | (11)

Rpath =
∑

pi ∈U δ[path(i) ⊆ ̂path(i)]
|U | (12)

where δ[ ̂path(i) ⊆ path(i)] = 1 if ̂path(i) is a subset of
path(i). Otherwise, it is zero. We also define F1path as the
harmonic mean of Ppath and Rpath.

For each defined metric, there are two levels of evaluation—
thread level and corpus level. In the thread level, these metrics
are first measured for each thread, and then, they are averaged
through all the threads in the test set. It emphasizes the thread
structure learning performance for each thread. In the corpus
level, these metrics are directly evaluated for the whole test set
without the thread-level evaluation and aggregation process.

D. Results and Analysis

In this section, we show and analyze the experimental
results. Tables II and III show the thread structure learning

performance on the two data sets. We underline the numbers in
each row if they are highest among the rule-based methods or
highest among the CRF-based methods. The numbers in bold
font represent the best performance among all the methods.
Figs. 3 and 4 show the impact of training set size.

1) Comparison Among Rule-Based Methods: Tables II
and III show that, among the rule-based methods, PR achieved
the best performance for most of the evaluation metrics.
In Table II, PR achieved the best performance for Accedge,
Accpath, and F1path. In Table III, PR achieved the best perfor-
mance for Accedge and F1path. Note that FIRST has perfect
Ppath since all the ground-truth paths have to contain the first
post and itself, which are the only two posts in the predicted
paths. In other words, all the predicted paths are part of the
ground-truth paths, which leads to a perfect Ppath. The similar
reason explains LAST ’s Rpath performance. However, their F1
performances are worse than the PR method.

2) Performance of CRF-Based Methods: For the CRF-
based methods, we evaluated the performance of MEP, MPR,
and EPR (see Table I for description of methods). First,
we found that in many cases, MEP is not as good as PR.
In Table II, MEP outperformed PR in Accpath, Ppath, and
F1path, but achieved a slightly worse performance in Accedge
and Rpath. In Table III, MEP only outperformed PR in Rpath.
Now, we analyze why MEP has inferior performance. MEP is
unaware of person reference relationships in thread structures
and assumes that all possible reply structures are equally likely,
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TABLE III

PERFORMANCE COMPARISON ON THE EPILEPSY FORUM DATA SET

Fig. 3. Performance on different training sizes (patients forum data set). (a) MPR. (b) EPR.

which introduces lots of incorrect labels into the training
data. The materialized fully labeled training set is thus not
a good approximation of the ground truth, which leads to a
less accurate trained model, and consequently lower prediction
quality.

When we combined PR with threadCRF, we can see that the
performance was significantly improved. In terms of Accedge,
Accpath, and F1path, MPR outperformed MEP, and EPR out-
performed MPR for both data sets. For MPR, as we have used
PR to select the more likely candidate parent posts during the
training set generation, the training set is more similar to the
ground truth, which helps to learn a more accurate model. That
explains why MPR outperformed MEP. Comparing MPR with
EPR, we can clearly see that the threadCRF model with the
additional PR feature has a better prediction performance. EPR
consistently outperformed all the other methods in Accedge,
Accpath, and F1path.

3) Impact of Training Set Size: We also analyzed the impact
of the training set size on the prediction performance of two
best methods—MPR and EPR. We randomly selected a set
of threads as the training set and tested on all the threads in
the data set. When the training set size is zero, it means that
there is no training process, and the feature weights are all
set to 1.0. Figs. 3 and 4 show the thread-level performance.

Note that the trend of the corpus-level performance is similar
and not shown here. It shows that the increase in training
size can improve performance at the beginning. In Fig. 3,
the performance of both MPR and EPR has stopped improving
after the training size is larger than 500. In fact, [1] also
observed that with a small training set, threadCRF can achieve
an encouraging performance compared with a larger training
set. Such findings show that, in order to bootstrap our training
process and predict all the unknown thread structures, we only
need a small set of threads that have a majority of labeled
reply relationships. In Fig. 4, the performance for MPR does
not continue improving with the training size increasing from
150 to 200, while the performance for E P R keeps increasing.
It suggests that with more features, more training instances are
needed.

In summary, the proposed CRF-based approach EPR
achieved the best performance in Accedge, Accpath, and F1path
for both data sets. A relatively small training set can achieve
an encouraging performance.

V. RELATED WORK

Recently, some research has been performed on learn-
ing or predicting thread structures for online forums, blogs,
or news websites. Reference [18] incorporated topic modeling
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Fig. 4. Performance on different training sizes (epilepsy forum data set). (a) MPR. (b) EPR.

and temporal dependence between posts in a sparse coding
approach. In particular, one post is represented as a linear
combination of all the preceding posts in the latent semantic
space. The structure information is embedded by adding the
constraints that the topics of each post can only be sampled
from the topics of those preceding posts. The sparse coding
approach can be used for reply relationship reconstruction,
junk post detection, and expert finding. Reference [19] used
an extended block hidden Markov model, which combines the
functionality of topic models with Markovian sequence mod-
els for unsupervised conversation structure modeling. While
sequence dependence modeling has been captured by the
CRF-based model, topic information can also be encoded as
a feature into our model to learn from the partially labeled
data under the supervised learning framework. Reference [10]
proposed an unsupervised approach to predicting the thread
reply structures, which utilizes the lexical chains between word
tokens within a discourse to recover the interpost links. Their
work is also orthogonal to ours, which can be combined with
our PR techniques and integrated into our learning framework.
Reference [9] used a classification approach to reconstructing
the reply structures based on a set of simple features, such
as time difference, content similarity, and quotation rela-
tionship. Reference [10] used a joint classification approach
with a linear-chain CRF or dependence parsing for predicting
thread structures, which considers both the link relationships
between posts and the dialog acts assigned to each link.
The dialog acts are made from the five categories—question,
answer, resolution, production, and others. Reference [20]
proposed a supervised approach based on the ranking-SVM
model to reconstruct the thread structures in blogs, online
news agencies, and news websites, which are slightly dif-
ferent from online forums. Compared with those supervised
approaches, threadCRF [1] is more effective by introducing
edge features to capture the long-distance dependency. In this
article, we extend the threadCRF model by considering the
partially known structures and the abundant person reference
information available in person-centric forums. Our contribu-
tions, learning from the partially labeled data and leverag-
ing person reference relationships, have not been exploited
by prior work. They are orthogonal to the contributions of

some related work and can be combined with them to boost
performance.

To address the partially labeled data problem in a text
mining application, a semisupervised training procedure for
CRFs has been proposed by [21], which can be used with a
combination of labeled and unlabeled training data. However,
instead of having some instances fully labeled and some
unlabeled, each training instance in our setting, which is a
thread, is partially labeled. Therefore, the above-mentioned
semisupervised training procedure is not applicable to our
problem. Reference [22] proposed a training procedure with
incomplete annotated sentence instances for the Japanese word
segmentation and POS tagging tasks. Inspired by their work,
we materialize thread structures to train the threadCRF model
for our thread structure learning task.

In addition, there are research works related to PR on
forums. First, some general coreference resolution or anaphora
resolution systems can be used for PR [11]–[13]. However,
although these general resolution systems are good at resolving
mentions within a post, they are not suitable for coreference
resolution across posts. The only coreference resolution system
related to forums is introduced by [23], which focuses on
the coreference resolution on blogs and commented news in
Dutch. Blogs and commented news in Dutch are different from
health forums in English, and their system is also not publicly
available. Some coreference resolution or pronoun resolution
systems for dialogs, such as those proposed by [14] and [24],
focus more on short-text dialog in spoken language, while our
article addresses PR in forums.

Our preliminary findings have been presented in a short
workshop article [25]. In this article, we systematically inves-
tigate the theories and algorithms in this problem. Two
additional methods, M E P and E P R, are introduced and
evaluated in this article. We also used more metrics to evaluate
the proposed methods, together with a new larger data set,
the patients’ forum data set, which has the original labels as
the ground truth.

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed to learn the complete thread
structures on online health forms with partially labeled data.
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We first leverage the partially labeled structures that are preva-
lent in Web forums to learn the complete thread structures
based on a statistical machine learning model: threadCRF.
We then exploit the abundant person reference information
in person-centric forums, together with threadCRF, for thread
structure learning. Experimental evaluation demonstrates the
effectiveness of our proposed methods. In the future, we will
explore if other CRF models can be adapted to address this
problem. We also plan to generalize our approaches for other
types of forums. For example, we may use entity resolution
instead of PR to leverage the interactions of entities mentioned
in the posts for thread structure learning for all forums.
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